Épreuve partielle #2

RÉPONDRE À EXACTEMENT CINQ (5) QUESTIONS.

(20 points)

1) Soit X_1, X_2, \ldots, X_n un échantillon aléatoire de la loi uniforme $U[0, \theta]$, où θ la longueur de l'intervalle est inconnue. Existe-t-il une constante k telle que le multiple de l'étendue $k[X_{(n)} - X_{(1)}]$ soit un estimateur sans biais de θ ? Justifier votre réponse.

(20 points)

- 2) On suppose que n nombres X_1, X_2, \ldots, X_n sont tirés au hasard dans un intervalle dont la borne inférieure et la longueur sont égales et inconnues.
 - a) Proposer un modèle probabiliste pour représenter cette expérience aléatoire.
 - b) Estimer selon les deux méthodes vues en classe la longueur de l'intervalle.

(20 points)

3) Le tableau suivant représente les fréquences observées d'un échantillon aléatoire de taille 50 de la loi de Poisson $\mathcal{P}(\lambda)$ où $\lambda > 0$ est inconnu.

Déterminer l'expression de l'estimateur de vraisemblance maximale de la probabilité $P(X \ge 3)$ et calculer sa valeur.

N.B. On rappelle que la fonction de masse de la loi $\mathcal{P}(\lambda)$ est donnée par

$$f(x|\lambda) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!}, & x = 0, 1, 2, \dots \\ 0, & \text{sinon.} \end{cases}$$

(20 points)

4) On considère le problème d'estimer σ^2 pour la loi $N(0, \sigma^2)$ de densité

$$f(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{x^2}{2\sigma^2}\right\}, \quad -\infty < x < \infty.$$

On dispose d'un échantillon aléatoire X_1, \ldots, X_n .

a) Montrer que l'information de Fisher est donnée par

$$I(\sigma^2) = \frac{1}{2\sigma^4}.$$

b) On sait que l'estimateur de vraisemblance maximale $\hat{\sigma}_{MV}^2$ est égal à $\sum_{i=1}^{n} X_i^2/n$. Vérifier que cet estimateur est sans biais <u>et</u> optimal.

(20 points)

- **5**)a) Pour faire suite à la question 4, on sait qu'un autre estimateur sans biais de σ^2 est la variance échantillonnale $S^2 = \sum_{1}^{n} (X_i \overline{X})^2 / (n-1)$. Vérifier que S^2 n'est pas optimal.
 - b) Soit X_1, X_2, \ldots, X_n un échantillon aléatoire de la loi uniforme sur [0,1]. Montrer par induction mathématique ou autrement que $E(X_{(i)}) = i/(n+1)$, $i=1,\ldots,n$. Vous pouvez supposer que ce résultat est vrai lorsque i=1 ou n.

(20 points)

6) Soit Y_1, \dots, Y_n un échantillon aléatoire de la loi continue de densité

$$f(y|\theta) = \frac{2y}{\theta^2}, \quad 0 < y < \theta.$$

- a) Vérifier que $\hat{\theta} = \frac{3}{2}\overline{Y}$ est un estimateur sans biais de θ .
- b) Comment se compare la variance de $\widehat{\theta}$ à la borne de Cramér-Rao? Expliquer ce résultat.

Jean-Claude Massé Professeur